16 research outputs found

    Crossmodal duration perception involves perceptual grouping, temporal ventriloquism, and variable internal clock rates

    Get PDF
    Here, we investigate how audiovisual context affects perceived event duration with experiments in which observers reported which of two stimuli they perceived as longer. Target events were visual and/or auditory and could be accompanied by nontargets in the other modality. Our results demonstrate that the temporal information conveyed by irrelevant sounds is automatically used when the brain estimates visual durations but that irrelevant visual information does not affect perceived auditory duration (Experiment 1). We further show that auditory influences on subjective visual durations occur only when the temporal characteristics of the stimuli promote perceptual grouping (Experiments 1 and 2). Placed in the context of scalar expectancy theory of time perception, our third and fourth experiments have the implication that audiovisual context can lead both to changes in the rate of an internal clock and to temporal ventriloquism-like effects on perceived on- and offsets. Finally, intramodal grouping of auditory stimuli diminished any crossmodal effects, suggesting a strong preference for intramodal over crossmodal perceptual grouping (Experiment 5)

    Journal of Vestibular Research 13 (2003) 265--271 265 IOS Press

    No full text
    We measured how much the visual world could be moved during various head rotations and translations and still be perceived as visually stable. Using this as a monitor of how well subjects know about their own movement, we compared performance in different directions relative to gravity. For head rotations, we compared the range of visual motion judged compatible with a stable environment while rotating around an axis orthogonal to gravity (where rotation created a rotating gravity vector across the otolith macula), with judgements made when rotation was around an earth-vertical axis. For translations, we compared the corresponding range of visual motion when translation was parallel to gravity (when imposed accelerations added to or subtracted from gravity), with translations orthogonal to gravity. Ten subjects wore a head-mounted display and made active head movements at 0.5 Hz that were monitored by a low-latency mechanical tracker. Subjects adjusted the ratio between head and image motion until the display appeared perceptually stable. For neither rotation nor translation were there any differences in judgements of perceptual stability that depended on the direction of the movement with respect to the direction of gravity
    corecore